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Experimental studies of the formation of Turing patterns in the (chlorine dioxide, iodine, malonic acid) reaction
are performed in a spatial open gel disk reactor where all the input species are fed onto one side by a continuous
stirred tank reactor. This setup is shown to fit the pool-chemical approximation used in most theoretical
approaches. Nonequilibrium phase diagrams are established as a function of concentrations in the input flows.
In agreement with theoretical predictions, the location of the transition from uniform steady states to Turing
patterns is found to be almost independent of the concentrations of the complexing agent which controls the
effective diffusion of activatory species. Extensive analytical and numerical calculations in two and three
dimensions are performed on the basis of the Lengyel-Rábai-Epstein kinetic model and its two-variable
reduction. This particular experimental configuration is shown to minimize the problems encountered with
more commonly used versions of spatial open reactors. In standard conditions, the quantitative agreement
with the experiments is excellent in regard to the sketchiness of the model. Finally, we discuss the role of
boundary conditions and comment on problems they raise in the use of one-side-fed open spatial reactors.

1. Introduction

Far from thermodynamic equilibrium, organized concentration
patterns can spontaneously develop in unstirred solutions of
reacting and diffusing chemical species, as predicted by Turing
in 1952.1 Theoretical developmentssoften in a biological
contextsshow that these stationary concentration patterns
heavily rely both on competing activatory and inhibitory
chemical mechanisms and on differences between the diffusion
coefficients of species.2-5 In particular, in two-variable systems,
the activatory species must diffuse more slowly than the
inhibitory species. The clear-cut experimental observation of a
chemical Turing pattern was only achieved in late 1989,6 on
operating the chlorite-iodide-malonic acid (CIMA)7,8 reaction
in an open spatial reactor. This long awaited success triggered
a renewal of experimental9-11 and theoretical work on Turing
structures (for an overview, see chapters 7-10 in ref 12).

Most of the theoretical and numerical works are based on
formal chemical schemes.13-20 However, some efforts to
understand, at the chemical level, the mechanism of pattern
formation observed with the CIMA reaction have been initiated
by the Brandeis group.21-27 The CIMA reaction is one among
the very few reactions which can exhibit transient oscillatory
dynamics when performed in batch conditions.7 Lengyel, Ra´bai,
and Epstein28,29 have shown that when the reaction oscillates,
most of the initial chlorite and iodide ions have been consumed
and that the major species are then chlorine dioxide, iodine,
and malonic acid. Appropriate mixtures of the three latter species
exhibit oscillations immediately upon mixing and later also
produced Turing patterns in an open spatial reactor.24 These
authors proposed a five-variable kinetic mechanismshereafter
referred as the Lengyel-Rábai-Epstein (or LRE) modelswhich
accounts for the oscillatory behavior of batch mixtures of this
CDIMA reaction.28 They also derived a two-variable version
of this mechanism. In this skeleton version, iodide and chlorite
play respectively the role of the activator and of the inhibitor.

Furthermore, to explain the observed Turing structures, Lengyel
and Epstein suggested that the necessary slower diffusivity of
the activator is obtained through a fast reversible immobilization
on selective sites in the gel. The effective reduced diffusivity
of iodide could be obtained by complexation of iodide by the
macromolecules of starch initially used as color indicator or by
the gel matrix itself.21,22 This skeletonized mechanism is
hereafter referred as the Lengyel-Epstein (or LE) model. Some
of the predictions linked to the Lengyel and Epstein hypothesis
were qualitatively confirmed by Agladze et al.,31 who used the
original CIMA reaction, and by Noszticzius et al.,32 who used
the CDIMA version of the reaction.

However, the experiments were performed in open spatial
reactors made of a piece of gel where input species are fed by
diffusion of two complementary subsets of chemicals from two
opposite sides. In the most popular geometry presently in use,
the reactor is made of a thin disk of gel fed onto the opposite
faces.10 This introduces parameter gradients in the direction
orthogonal to the faces, leading to a continuous change of control
parameters. In these conditions, a pattern, breaking the planar
symmetry, eventually forms in regions where the values of these
local parameters meet the conditions for a Turing instability,
i.e., in a more or less thick stratum parallel to the disk faces.23,33

There are several serious difficulties in modeling the formation
of patterns in such devices. First of all, theory is much less
developed for systems with gradients than it is for homoge-
neously fed systems. Second, the input species concentrations
are only fixed on the boundaries and their gradients inside the
gel are actually unknown. Finally, the structures are intrinsically
three-dimensional. In this respect, in the gel disk reactor, the
patterns are observed in a direction orthogonal to the faces, so
that the light absorption is averaged over the film thickness. If
the structured stratum is thicker than one wavelength, the
determination of the 3-D pattern geometry is not straightforward
and specific arrangements must be used.34,35When the structure
is confined within a monolayer by the gradient, it was shown
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that the patterns are similar to those of a genuine 2-D system
but that their stability and their selection can be significantly
modified.36 This makes difficult a quantitative comparison
between the model predictions and the experimental observa-
tions. Note that Lengyel and Epstein observed transient Turing
patterns and waves in a gradient-free unstirred batch solution
of the CDIMA reaction in the presence of starch.26 However,
because of unavoidable parameter drifts, and critical slowing
down phenomena, a clear determination of the bifurcation values
are generally not possible in closed systems.

In this paper, we present a systematic study of Turing patterns
and dynamical instabilities in a gradient-free reaction-diffusion
system which could be easily modeled. The main objective was
to check quantitatively the assumptions and predictions of the
LE model, especially concerning the effects of the complexing
agents on the Hopf and Turing bifurcations. In order to get
experiments and theory in closer connection, we used an open
reactor that overcomes most of the above mentioned difficulties.
According to the work of Lengyel and Epstein, in the CDIMA
reaction, if no external gradients are imposed, the variations of
the input species concentrations are small on the distance of a
wavelength or over a period of oscillation. If all the input
reactants are fed onto one side of a thin enough film of gels
i.e. the thickness is about one wavelength or lessswe expect
the concentrations of these reactants to be almost constant in
space and time all through the gel. Accordingly, the film should
be a good approximation of a 2-D system with homogeneous
constraints. The price to pay is that reaction already proceeds
in the reservoir. In order to exert a control on the boundary
conditions, this reservoir must be a continuous stirred tank
reactor (CSTR) with well-defined input flows. Then, the actual
concentrations onto the feed-face are not those of the input flows
but result from the system dynamics. We shall see that this can
be easily taken into account.

In the spirit of an approach which has proved its efficiency
in the study of oscillating reactions, we have used this setup to
establish the topology of nonequilibrium phase diagrams.38

These experimental diagrams and various properties of the
system will be analyzed together with those obtained by
numerical simulations of the LE model of the reaction.

In section 2, we first describe the reactor and provide a brief
review of the reaction used in this work. We subsequently
present the LRE and the LE models of the reaction, our
modeling strategy, and the analytical and numerical techniques.

In section 3, we report in parallel the experimental observa-
tions and the numerical predictions. In section 3.1, we establish
the phase diagram for the homogeneous reaction in a CSTR.
These and other results are used to assign appropriate values to
kinetic constants that were previously fixed more or less
arbitrarily in the literature.

In section 3.2sthe core of the paperswe present an extensive
study of the phase diagrams in the 2-D limit and discuss the
role of the various parameters, in particular the role of the
concentration of the complexing agent.

In section 4, we summarize and discuss the results and draw
conclusions. More precisely, we point out the limits of the
different approximations and discuss the effects of the genuine
boundary conditions when the two-dimensional hypothesis is
dropped. The specific role of the interfacial region that links
the CSTR and the gel film is underlined.

2. Experimental and Modeling Techniques

2.1. Experimental Setup. Different geometries of open
spatial gel reactors have been developed to study sustained

chemical patterns. In such devices, soft hydrogels are used as
reaction media to prevent the reacting solutions from convection.
In these hydrogels, small solvated molecules and ions diffuse
practically as in plain water.

A schematic representation of the reactor is given in Figure
1. It consists of a continuous stirred tank reactor (CSTR) and a
very thin transparent disk of agarose gel (0.2 mm thick, 20 mm
diameter), one face of which is in contact with the contents of
the CSTR. The opposite face is pressed against a planar,
impermeable, solid back. Between the disk of gel and the CSTR,
an inorganic membrane (Anotec from Whatman with unidirec-
tional pore size 0.02µm) rigidly maintains the gel. To reinforce
the membrane and improve its adhesion with the disk of gel it
is impregnated with a 8% agarose gel. Its main role is to cut
down the hydrodynamic turbulence which could distort the
patterns developing inside the disk. Moreover, it introduces a
decoupling factor between the dynamics of the CSTR and that
of this gel disk. This point will be discussed in section 4. The
disk is obtained by cooling in a shape a hot solution of 2%
agarose (Fluka 05070) containing well-defined concentrations
of poly(vinyl alcohol) (Sigma MW 9000). Poly(vinyl alcohol)
(PVA) acts both as a color indicator of polyiodide ions and as
a complexing agent governing the effective diffusivity of
complexed ions in particular the diffusivity of I-, a species
controlling the activatory process in the CDIMA reaction.

The unusual toroidal shape of the CSTR was designed to
minimize the thickness of the colored fluid layer through which
the observations of the gel are made and to produce a rapid
uniform renewal of the reacting solution immediately in contact
with the inorganic membrane. This renewal is obtained by a
turbine which produces fast mixing and recirculation with a
characteristic time less than 2 s.

The CSTR is continuously refreshed by constant flows of
chlorine dioxide, iodine, and malonic acid. These chemical
solutions are set in three separated vessels, all containing 1.0
× 10-2 M sulfuric acid. The malonic acid solution also contains
a controlled concentration of PVA in order to avoid long term
losses of PVA from the disk and to keep the CSTR in an
appropriate stationary state. All chemicals, of analytical purity,
are used without further purification. Stock solutions of chlorine
dioxide are prepared from the reaction of sodium chlorite with
sodium peroxodisulfate in strongly acidic solutions. The gaseous
ClO2 thus formed is carried away, with a stream of air, and
redisolved in a flask containing ice-cold distilled water.39 The
concentrations of the stock solutions of ClO2, stored in the dark
at 4°C, are checked every 2 days by iodometric titration. Equal

Figure 1. One-side-fed gel disk reactor. Schematic representation of
a transversal section. Chemical patterns develop in the disk of gel. The
CSTR controls the feed composition imposed on one side of the disk.
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flows coming from the three vessels are injected premixed by
precision piston pumps into the CSTR through a three-way inlet
port. The residence time of the CSTR isτ ) 480 s. All
experiments were performed at a temperature of 4.5°C ( 0.5
°C with a fixed iodine feed concentration [I2]0 ) 3.0 × 10-4

M.

A bright platinum electrode measures the redox potential in
the CSTR and provides a qualitative characterization of states.
The evolution of the patterns in the gel is monitored by a black
and white CCD camera linked to a contrast-enhancing device
(Hamamatsu C2400). The images, stored on a VCR, are further
analyzed by image processing.

In the experimental section, the concentrations of the input
species, bracketed in the text by [ ]0, correspond to the
concentrations that these reactants would have after mixing in
the total inlet flow and prior to any reaction. The concentrations
of the volatile species, chlorine dioxide and iodine, in the input
flows are corrected for the losses by diffusion through the Teflon
injection tubings.

2.2. Kinetic Models.On the basis of various kinetic studies
of separated subsets of reactions,40,42,43 Lengyel, Ra´bai, and
Eptein have shown that the main dynamical features of the
CDIMA reaction could be accounted by the following set of
stoichiometric equations:28,29

Here MA, I2, ClO2, ClO2
-, and I- are the independent variables,

[H+] is considered as constant, and Cl- and IMA are inert
products. To account for the fast reversible complexation of I-

and I2, the following mass balance equation is introduced:

Here S represents the complexing sites for I-sin our experi-
ments these sites are provided by the poly(vinyl alcohol)sand
SI3- is a symbolic species that holds for a series of different
polyiodide complexes in fast equilibrium. As in ref 30, the rate
equations for eqs 1 and 2 are

In the absence of external feed and convection, the concentration
changes are ruled by the system of equations

where the molecular diffusion terms have been introduced. Since
the complexing agent and the complex are large macromol-
ecules, their diffusion in the gel is negligible and the respective
diffusion terms have been dropped out. The following constants
are set to the values found in the literature and adjusted at 4°C
by Lengyel and Eptein:21,22,27-29,44k1a ) 6.2× 10-4 s-1, k1b )
5 × 10-5 M, k2 ) 900 M-1 s-1, k3a ) 100 M-2 s-2, k3b ) 9.2
× 10-5 s-1, DMA ) 0.4× 10-5 cm2 s-1, DI2 ) 0.6× 10-5 cm2

s-1, DClO2 ) 0.75× 10-5 cm2 s-1, DI- ) 0.7 × 10-5 cm2 s-1,
DClO2

- ) 0.75× 10-5 cm2 s-1. The values we used fork4, k-4,
andR will be discussed later.

When the reaction is performed in a CSTR, the diffusion
terms must be replaced by flow terms of the formkE([X]0 -
[X]), where [X] is the concentration of species X in the reactor
andkE is the inverse of the residence time. In the following,kE

will be fixed at the valuekE ) 2 × 10-3 s-1.
In agreement with experimental observations, [I-] and

[ClO2
-] undergo much larger changes in time and space than

the concentrations of the input species. Lengyel and Epstein
have shown that, under these conditions, system (4) can be
reduced to a system of two normalized kinetic equations22,27,44

with

whereτ and r ′ respectively rescale the time and space units.
Systems (4) and (5) are what we refer as the LRE and LE
models. Before we proceed further, a few points that are often
overlooked deserve special comments.

d[MA]
dt

) -r1 + DMA∆r[MA]

d[I2]

dt
) -r1 + 1/2r2 + 2r3 - r4 + DI2

∆r[I 2]

d[ClO2]

dt
) -r2 + DClO2

∆r[ClO2]

d[S]
dt

) -r4

d[I-]
dt

) r1 - r2 - 4r3 - r4 + DI-∆r[I
-]

d[ClO2
-]

dt
) r2 - r3 + DClO2

-∆r[ClO2
-]

d[SI3
-]

dt
) r4 (4)

∂u
∂τ

) 1
σ(a - u - 4

uV
1 + u2

+ ∆r ′u)
∂V
∂τ

) b(u - uV
1 + u2) + d∆r ′V (5)

u )
[I-]

xR
V ) ( k3b[I 2]

Rk2[ClO2])[ClO2
-] d ) DClO2

-/DI-

a ) ( k1a[MA]

xRk2[ClO2])( [I 2]

k1b + [I 2]) b )
k3b[I 2]

xRk2[ClO2]

σ ) 1 +
k4

k-4
[S]0[I 2] τ ) k2[ClO2]t r ′ ) (k2[ClO2]

DI-
)1/2

r

(6)

MA + I2 f IMA + I- + H+

ClO2 + I- f ClO2
- + 1/2I2

ClO2
- + 4I- + 4H+ f 2I2 + Cl- + 2H2O (1)

S + I2 + I- h SI3
- (2)

r1 )
k1a[MA][I 2]

k1b + [I 2]

r2 ) k2[ClO2][I
-]

r3 ) k3a[ClO2
-][I -][H+] +

k3b[ClO2
-][I 2][I

-]

R + [I-]2

r4 ) k4[S][I 2][I
-] - k-4[SI3

-] (3)
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ParameterR is a somewhat ad hoc constant. Experimental
studies40,42predict that the second term in rate lawr3 (see eq 3)
is of the form k3b[ClO2

-][I 2]/[I -] over a large range of
concentrations. However, the validity of this simple rate law
cannot hold for very low [I-] since it givesr3 f ∞ when [I-]
f 0 whereas one obviously expectsr3 f 0. Several authors29,45

have introduced the constantR and replaced the original term
1/[I-] given by Kern and Kim40 by [I-]/(R + [I-]2) in order to
restore coherence at this level. One can considerxR as a
cutoff concentration for [I-]. Above this cutoff, the modified
rate law fits well the experimental data within the considered
range, but below this value, the inhibitory character of termr3

drops out as expected. This cutoff was generally fixed at low
reasonable but arbitrary values (R ∼ 10-12-10-14). Although
these small changes could appear as a minor point, it occurs
that all essential quantities related to Turing patterns, such as
the critical values, the pattern amplitudes, etc., depend explicitly
onR. Actually, the switch between inhibitory and noninhibitory
regimes is one of the sources for the Turing pattern formation.
These properties impose severe restrictions in the use of the
LE model. First, the constantR should not be chosen arbitrarily
but in direct connection with experimental results. Second, the
rate law r3 should not be used for [I-] , xR. Beyond this
limit, the kinetic law should no longer be parametrized by
introducing a simple constant term. As a result, it is not possible
to describe quantitatively the formation of the patterns in systems
where concentration gradients of input species lead to vanishing
[I-] in some regions of the system, as it is the case in the original
experiments with the CIMA reaction. Attempts to account for
this category of experiments should require a more involved
description of the kinetics that could possibly be derived from
the very detailed mechanism recently proposed by Lengyel et
al.41 The alternative is to perform the experiments in the absence
of strong gradients, keeping the input species concentrations in
a domain where the model is valid. We shall see that the use of
a one-side-fed reactor precisely meets these requirements and
allows for an appropriate use of the simple LE model.

In the absence of precise data on the actual concentration of
complexing sites per mass unit of polymer, we have arbitrarily
setk-4 to unity, a value already chosen by Lengyel and Epstein
and we have estimated that a concentration of complexing agent
[S] ) 10-3 corresponds to 1 g/L of PVA; the constantsK )
k4/k-4 andR were simultaneously adjusted to the valuesR )
10-15 andK ) 108 (i.e. k4 ) 108) in order to fit at best a few
selected experimental transition points (e.g. onset of oscillations
or of Turing patterns) and oscillation periods.

2.3. LE Model: Theoretical Predictions.Although the LE
model has become very popular, only a few analytical properties
of this model are presently available in the literature. We have
derived some important analytical results that were completed
by 2-D numerical simulations to understand the basic dynamical
properties of this model.

Close to onset, Hopf bifurcations, Turing bifurcations, and
pattern selection are generally studied in terms of amplitude
equations15,46 that can be derived by multiple time and length
scales analysis.50 Starting from these equations, commonly used
in nonlinear dynamics, one can determine the selection of
standard patterns close to onset51,52 as it was done for the
Brussellator18 or other models leading to Turing structures.36

In a two-dimensional space, these are hexagon and stripe
patterns. The amplitude equations for the LE model have been
derived for 2-D systems with constant and uniform parameters
by several authors.37,53 Here, we only report the results (as
explicitly expressed in ref 53) that are essential to understand

the next steps. They can be obtained from the linear stability
analysis and from the complicated expressions of the coefficients
of the nonlinear amplitude equations. The ratiod ) DClO2

-/DI-

is a fixed quantity. When parameterd was involved, we used
the experimental valued ) 1.07 reported in ref 27. The
complexing agent is involved only through parameterσ.
Acceptable experimental values are within the range 1e σ <
1000. We usedb as the bifurcation parameter. The results are
gathered in diagrams drawn in the plane (a,b) and represented
in Figures 2 and 3.

In Figure 2, we show the lines where the homogeneous
stationary state loses stability. The full line represents the locus
of the bifurcation to a Turing structure given by

with the wavelength

Figure 2. Bifurcations of the Lengyel-Epstein model. Key:-
Turing bifurcation;s, Hopf bifurcation at various values ofσ. At Th,
H0 hexagon patterns change to Hπ; at Ts, stripe patterns become
subcritical.

Figure 3. Pattern selection in the Lengyel-Epstein model. Key:-,
Turing bifurcation;s, limits of stability of the different patterns. S:
uniform stationary pattern. H0: H0 hexagon patterns. Hπ: Hπ hexagon
patterns. B: stripe patterns.

bT ) d
5a

(13a2 - 4x10ax25 + a2 + 125) (7)
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The bifurcation pointbT and the wavelengthλc are independent
of σ. Initially shown by Lengyel and Epstein,22 this property is
in agreement with the extended theory of Pearson and Bruno.47

These authors predict that, when the diffusion is controlled by
formation of a non reactive immobilized complex, the Turing
bifurcation point does not depend on the concentration [S] of
the complexing agent because, in this case,σ simultaneously
renormalizes the reactive term and the diffusion term. Thin
curves show the Hopf bifurcation for different values ofσ. The
instability occurs at

with the period

Note that Turing and Hopf bifurcations both occur whenb
decreases. Thus, at low values of [S], precisely forσ < (26 +
8x10)/6d = 7.99, the Hopf bifurcation always precedes the
Turing bifurcation so that the system becomes oscillatory first.
Above this value, the Turing bifurcation occurs first within an
interval of parametera which rapidly increases withσ (accord-
ingly with [S]) and a stationary spatial pattern can form.

Additional information on pattern selection can be obtained
from the signs of the coefficients of the amplitude equations.
In the standard selection scheme15,17,18,51,52a stable hexagonal
pattern bifurcates first subcritically. A stripe pattern bifurcates
supercritically but is unstable. When the distance to the
bifurcation point increases, the stripe pattern gains stability,
before the hexagonal pattern becomes unstable in turn. Thus
the natural sequence is homogeneous-bistable (uniform/
hexagons)-hexagons-bistable (hexagons/stripes)-stripes. The
extent of the subcritical region overwhich the hexagonal pattern
and the homogeneous steady state are simultaneously stable is
related to a second-order term and is usually very small. There
are two types of hexagons, referred to as H0 and Hπ, respectively
when the maxima (Figure 4a) or the minima (Figure 4c) of
amplitude form the hexagonal network. The nature of the
hexagons at the transition is determined by the sign of the
quadratic term in the amplitude equations. For the LE model, a
change of sign occurs at point Th on Figure 2, ata ) ah ) 5[(6
+ x21)/3]1/2 = 9.3908. Hexagons H0 are obtained whena <
ah, and hexagons Hπ, whena > ah. At point Th, the domain of
hexagons vanishes and the stripes are stable right away. Another
remarkable point is point Ts (wherea ) as = 13.8254). When
a > as, all patterns (hexagons and stripes) become subcritical
so that the subcritical domain can become quite large. In this
region where localization phenomena are possible,55 the con-
centration changes become very stiff. They form steep fronts
that are almost frozen in time so that the patterns would not
reorganize on realistic experimental times. Computed examples
of the different patterns are presented in Figure 4. We have
established, by numerical simulation, the effective stability of
the different types of patterns with wavelengthλc in the vicinity
of point Th. The results are gathered in Figure 3. Note that, far
from the transition, the sideband of unstable wavelength
increases rapidly so that the selection of patterns withλ * λc

should be considered. Moreover, for a point far from the
bifurcation, the valueλc to be used in the numerical tests differs
with the choice of the bifurcation parameter (e.g.a at constant
b or b at constanta), so that the stability of the different patterns
cannot be determined unambiguously. To indicate that a stability
limit is no longer significant in this respect, it is terminated by
an arrow in the diagram. Note the existence of reentrant
hexagons18,36 when |b - bT| increases.

2.4. Computational Methods. In a preliminary stage, we
have checked the basic hypothesis on which our experimental
and numerical approaches rely. To do so, we have first studied
the CSTR coupled with a linear one-dimensional reactor of
length l, wherel ) 0.2 mm corresponds the thickness of the
gel with the seven-variable LRE model (eqs 4). The ratio of
the CSTR volumeV to the gel volumeV is involved in the
exchange rate between the CSTR and the gel. It was fixed to
the typical experimental valueV/V ) 200. The equations were
integrated numerically by finite differences (coupled cells) with
a fourth-order Rosenbrock time integrator.48 The first cell
corresponds to the CSTR, taking into account the possible
feedback on the CSTR dynamics. The first cell inside the 1-D
reactor is diffusively coupled to the CSTR cell. No-flux
boundary conditions are used on the opposite side. In this
configuration, we investigated the effect of the gel depth, in
particular on the profile of the input species concentrations, to
check the homogeneity of these input species, and we computed
their concentrations within the CSTR, as a function of the
concentrations in the input flow. These computed values are
precisely those which have to be maintained at the CSTR-gel
interface. Note that, due to the large value ofV/V, one finds
that the reactions in the gel have practically no influence on
the CSTR dynamics. On the contrary, if the CSTR contents
enters into an oscillatory state, it normally forces oscillations
in the gel. Two typical examples of the concentration profiles
of all species, in a regime for which computed Turing patterns

Figure 4. Typical Turing patterns in the Lengyel-Epstein model
(σ ) 50): (a) H0 pattern,a ) 8.8,b ) 0.09; (b) stripe pattern,a ) 10,
b ) 0.16; (c) Hπ pattern,a ) 12, b ) 0.39.

λc ) 2πx x25 + a2

2x10a - 5x25 + a2
(8)

bH ) 3a2 - 125
5aσ

(9)

Tc ) 2πσx 25 + a2

5(3a2 - 125)
(10)
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form, are reported in Figure 5. We can see that the concentra-
tions of the input species [MA], [ClO2], [I 2], and [S] can be
considered as practically constant inside the gel. The same
conclusions hold for temporal changes during the oscillating
regime. Thus, we confirm both the validity of the approxima-
tions in the LE model and the absence of relevant concentration
gradients of input species in the gel. Therefore we can use a
“pool chemical” approximation and the simple and analytically
tractable LE model (eqs 5) in place of the seven-variable LRE
model to perform computations in higher dimensionalities.

To establish the phase diagrams that constitute the core of
this paper, we assumed that the gel is thin enough to be
considered as a two-dimensional system. Since the feedback
effects on the CSTR of the reactions taking place in the gel are
negligible, we used the concentrations that the input species
would have inside an uncoupled CSTR to assign the actual
parameter valuesa, d, andσ inside the gel. Remember that these
concentrations are different from those in the flow: their
asymptotic values were computed in the (uncoupled) CSTR
almost instantaneously using the LRE model. Thereafter, the
bifurcation lines can be determined by checking the parameter
set against eqs 7 and 9. This procedure drastically reduces the
amount of necessary computations. The general features of the
2-D patterns were determined by solving numerically eqs 5 on
a square domain with periodic boundary conditions for a large
set of input flows covering the experimental range. The
integration was achieved with an implicit odd-even hopscotch
method with step control,49 adapted to the case of nonlinear
reactions.17 To compute the pool chemical parameters, one could
have used the whole coupled system CSTR-gel rather than the
values in the CSTR alone and taken the input species values at
another point in the gel. Such computations, using the medium
point of the 1-D reactor, provided identical results.53 This
supports the validity of the simple and efficient approach
presented here.

The problems related to the possible tridimensional organiza-
tion of the structure in the depth of the gel and the role of the
boundary conditions onto the feeding face when the assumption
of a bidimensional system is relaxed will be discussed in section
4.

3. Results

The CSTR dynamics and the patterns in the disk of gel were
simultaneously monitored. However, to make easier the pre-
sentation of the results, we shall at first separate the description
of the homogeneous dynamics of the CSTR from that of the
spatial structures observed in the disk. Whereas the CSTR
dynamics does not depend much on the gel dynamics, the
reverse is not true and intricated spatial phenomena can occur
in the disk of gel when the contents of the CSTR oscillate.

3.1. CSTR Dynamics.Beside temperature, flow rate, and
sufuric acid concentration, the iodine feed concentration was
kept constant during all the experiments.

Depending on the composition of the feed-stream, we can
qualitatively distinguish three states, identified by their dynamics
and the Pt-electrode potential value: a high-potential (>200
mV) steady state, an oscillatory state, and a low-potential (<200
mV) steady state. Different sections of the phase diagram of
the CSTR were explored. Figure 6 exhibits the limits of the
oscillatory state domain in the ([MA]0, [ClO2]0) plane, in the
absence of complexing agent. To emphasize the quenching effect
of [PVA]0 on the oscillatory dynamics, a planar section ([MA]0,
[PVA]0]) for a relatively low value of [ ClO2]0 is also provided
(Figure 7). The region of oscillations is located between the
two steady-state regions (high or low potential). However, at
low [ClO2]0 (Figure 6) and at high [PVA]0 (Figure 7) the domain
of oscillation closes up and a smooth transition between the
two qualitatively different steady states is obtained.

Phase diagrams computed with the seven-variable model
including flow terms and our choise of adjustable kinetic
parameters are also reported in Figures 6 and 7. The general
features are in very good agreement with the experimental
observations. The model predicts a subcritical Hopf bifurcation
at low [MA]0 and, at high [MA]0, a saddle-loop bifurcation

Figure 5. Numerical simulations of 1-D concentration profiles in the
depth of the gel (LRE model). The CSTR is located atx ) 0. Fixed
parameters: [S]0 ) 4.5 × 10-3 M, [I 2]0 ) 3 × 10-4 M; s, [MA] 0 )
2 × 10-3 M, [ClO2]0 ) 2.3 × 10-3 M; - - -, [MA] 0 ) 1 × 10-3 M,
[ClO2]0 ) 0.68× 10-3 M.
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associated with a narrow region of bistability between a steady
state and an oscillatory state (Figure 6). At low [MA]0, no
hysteresis is experimentally observed between the oscillatory
state and the steady state. This was expected since, in the model,
the width of the subcritical domain is of the order of the percent
and thus would fall out of our experimental accuracy.

At the other limit of the oscillatory domain, in the absence
of PVA (Figure 6), no hysteresis associated with a saddle-loop
bifurcation is readily observed in experiments. However, the
dynamics close to this limit of the phase diagram is consistent
with what one would expect in the vicinity of such a bifurca-
tion: oscillations exhibit large diverging periods and suddenly
stop with finite amplitude. Nevertheless, a small region of
hysteresis is experimentally observed at [PVA]0 ) 0.5 g/L
(Figure 7).

Note that there is a significant difference between the
predictions of the pool-chemical version of the LE model and
the CSTR version: in the initial pool-chemical version, the
domain of oscillations is unbounded on increasing [MA]0 while,
in the flow version, a steady state is recovered as in experiments.
At a given value of [ClO2]0, there is a critical [PVA]0 above
which no homogeneous oscillatory state is observed. The model
also nearly quantitatively fits this experimental fact (Figure 7).

Note that this upper oscillatory state limit shifts to lower [PVA]0

when [ClO2]0 is lowered.
To evaluate experimentally the contribution of flow terms to

the oscillatory dynamics, the effect of interrupting the feed was
examined. In general, the critical values of [MA]0 after which
oscillations immediately start are advanced by less than 10%
when the flow is stopped. The oscillations then persist for at
least 5 min. However, very often, the period increases by about
50% while the electropotential amplitude of oscillation de-
creases. This infers that in the region of constraint we explored,
the “instantaneous” dynamics inside the CSTR does not
dramatically depend on flow terms and that there is a fair chance
that the homogeneous dynamics of the disk of gel should follow
closely that of the CSTR. This agrees with the test numerical
calculations previously presented in section 2.4 (Figure 5) that
simulate the behavior in the thickness of the disk.

3.2. Phase Diagrams of Patterns in the Disk of Gel.The
different regions of stationary and nonstationary spatial patterns
breaking the boundary feed symmetry of the disk of gel were
observed over a wide range of values of [MA]0, [ClO2]0, and
[PVA]0. The results are gathered in different planar sections of
the phase diagram. Before we discuss the contents of these
sections, a few preleminary remarks are necessary.

The diagrams were established step by step using [MA]0 as
the bifurcation parameter. From each set of experimental input
flow concentrations, one can compute the concentrations in the
CSTR, from which are deduced, according to eq 6, the
parameters (a, b) of the LE model used in the numerical
simulations. To enlighten the comparison between the experi-
mental and numerical results, we have represented (Figure 8)
the paths in the (a, b) parameter space corresponding to the
changes of [MA]0 performed in experiments for three typical
values of [ClO2]0 (high, medium, and low). The Turing
bifurcation line is represented while the Hopf bifurcation lines
are not since they depend onσ which continuously changes
with the malonic acid concentration.

In the experiments, the light goes both across the gel and
across a thin layer of reacting solution in the CSTR. Thus, when
the contents of the CSTR oscillates, a nonstationary dynamics
is always observed but the actual dynamics in the gel cannot
be unambiguously determined. No comprehensive description
of the intricated dynamics observed in these regions is attempted
in this paper; more information can be found in ref 54. In Figure
9, we present the experimental and calculated sections of the
phase diagram in the ([MA]0, [ClO2]0) plane for two different
fixed values of [PVA]0. Three types of states are reported in
these diagrams: the uniform steady states, the stationary Turing

Figure 6. Planar section ([MA]0, [ClO2]0) of the phase diagram of the
CSTR at [PVA]0 ) 0. All other parameters are given in the text.
Symbols correspond to experimental states (4, stationary;b, oscilla-
tory). Lines are the computed limits (s, limit of oscillations; - - -, limit
of bistability between stationary state and oscillations).

Figure 7. Planar section ([MA]0, [ClO2]0) of the phase diagram of the
CSTR at [ClO2]0 ) 1 × 10-4 M. All other parameters are given in the
text. Experimental observations:4, uniform stationary state;2,
bistability between a stationary state and oscillations;b, oscillatory
state;s, experimental limit of oscillatory domain (estimated from these
data); -, computed limit of oscillations;- - -, computed limit of
bistability between a stationary state and oscillations.

Figure 8. Parameter paths in the LE model when [MA]0 is varied
experimentally from 5× 10-4 M up to the Hopf bifurcation (from left
to right). Key: s, Turing bifurcation line (For pointsTh and Ts, see
Figure 2);-, paths for [ClO2]0 ) 2.3 × 10-3 M (path 1), [ClO2]0 )
1.2 × 10-3 M (path 2), [ClO2]0 ) 0.7 × 10-3 M (path 3).

1796 J. Phys. Chem. A, Vol. 103, No. 12, 1999 Rudovics et al.



patterns which we strictly associate with non oscillatory states
of the CSTR, and the nonstationary states including traveling
waves and various oscillatory states which may or may not be
associated with oscillations in the CSTR.

Considering the extreme simplicity of the LE model compared
to the actual chemical kinetics, there is a striking agreement
between computational and experimental results, at least when
[ClO2]0 is not too low and [PVA]0 not too high. In both cases,
the Turing domain bracketed between a high [SI3

-] uniform
steady state and an oscillatory state respectively at low and high
[MA] 0 shifts to higher [MA]0 as [ClO2]0 is increased. The
computed Turing bifurcation line agrees almost quantitatively
with the experimental line. The general features of the experi-
mental and numerical Hopf lines also agree well, though the
numerical limits are nearly systematically shifted forward with
respect to the corresponding experimental lines.

There is also a very good agreement between computed and
experimentally observed pattern planform distributions. In
particular, the classical sequence of patterns when the distance
to onset increases is well reproduced in both cases (Figure 10).
If one starts from low [MA]0 and increases this parameter, a
transition occurs from the uniform dark state (high [SI3

-]) to a
stationary triangular array of clear spots, the Hπ hexagon pattern
of the model. When [MA]0 is further increased, the spot patterns
turns into a stationary stripe patterns. Although in experiments
the domain of stripe patterns is less widespread than in the
model, the general trends are followed. In both cases, the extent
of the domain of stripes increases with [ClO2]0. The model even
predicts that, at point Th in Figure 3, reached for [ClO2]0 ) 2.5
× 10-3 M, the Hπ domain vanishes at onset and that, for larger
values of [ClO2]0, a H0 state should develop. The latter is not

observed experimentally, but at such high values of [ClO2]0,
the pattern amplitude becomes so small that any pattern would
be difficult to detect experimentally. This problem is actually
encountered when [ClO2]0 > 1.4 × 10-3 M; for these values,
no patterned states were detected, even for large PVA concen-
trations.

There seems to be some discrepancy between the model
calculations and the experiments at high [PVA]0 and low [ClO2]0

below the oscillatory domain. In the experiments, when [MA]0

increases, the Turing state is followed by a new uniform steady
state, characterized by a lower value of complex [SI3

-] (clear
color). No similar computed bound appears in Figure 9. As a
matter of fact, when [MA]0 increases, the computed stationary
pattern becomes unstable and is replaced by an oscillatory state.
Since the volume of the gel is small and in contact with the
large volume of the CSTR which remains stationary, we suspect
that, in the experiment, the gel does not oscillate because it is
forced into a uniform steady state. This interpretation goes
beyond our present 2-D approximation so that the computed
limits are not really significant and have not been reported on
the diagrams. More general considerations on the role of the
coupling between the gel and the CSTR will be found in section
4.

At low [ClO2]0 values, the simulations predict that the domain
where the uniform steady state and the stationary patterns are
simultaneously stable (subcritical regime) tremendously in-
creases since the experimental path crosses the Turing line above
point TS (see Figure 8). The limit of this domain is reported in
Figure 9 (line T1). At the same time, the patterns become very
stiff and the dynamics slows down so that, at typical experi-
mental times, they remain in a quasi-frozen state, retaining
irregular planforms. Although no systematic bistability between
a patterned state and a uniform state was found in the
experiments, these tendencies were also observed. Coexistence
of a pattern and a uniform state was actually found in a narrow
region around point ([MA]0 ) 7.8× 10-4 M, [ClO2]0 ) 2.5×
10-5 M) where localized patterns, a phenomenom linked to
subcritical regimes,55 were observed.59 Moreover, when [ClO2]0

Figure 9. Plane section ([MA]0, [ClO2]0) of the pattern phase diagram
for two different values of [PVA]. Experimental observations:0, sta-
tionary uniform states;2, Turing patterns;O, oscillatory states;s, limit
of Turing (TEXP) and oscillatory (OEXP) domains (estimated from these
data). Numerical simulations:- - -, Turing bifurcation (T0); - - , limit
of bistability between uniform and patterned states (T1); -, limit of
oscillatory domain (OS).

Figure 10. Sequence of patterns as a function of [MA]0. Fixed
parameters: [PVA]0 ) 10 g/L, [ClO2]0 ) 6 × 10-4 M. Experimental
data: (a) [MA]0 ) 1.25 × 10-3 M; (b) [MA] 0 ) 1.5 × 10-3 M; (c)
[MA] 0 ) 1.9× 10-3 M. Numerical data: (a) [MA]0 ) 1.1× 10-3 M;
(b) [MA] 0 ) 1.2 × 10-3 M; (c) [MA] 0 ) 1.45× 10-3 M.
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is decreased at constant [MA]0, the experimental wavelength
strongly increases and the patterns eventually disappear. In the
simulations, the wavelength increases until it becomes larger
than the system size itself. When this limit is reached, the
patterns obviously vanish. Anyway, for the same reasons as
previously mentioned, the 2-D approximation should break
down in this limit where the pattern amplitude becomes
excessively large.

According to ref 47, in the pool-chemical approximation, the
addition of anonreactiVe immobile complexing agent involved
in a fast reVersible process changes neither the steady-state
solution nor the position of the Turing bifurcation line and the
associated critical wavelength. Indeed, in the LE model, the
Turing bifurcation point does not depend onσ. In flow reactors,
there are additional sink terms of the formke[SI3-] for the
complex. They do not depend on an equilibrium with the
complexing agent so that the steady-state value of the system
should depend on the concentration of the complexing agent.
Thus, the strict invariance of the Turing bifurcation on the
concentration of such a complexing agent should drop in our
CSTR/gel system.

However, the dependence of the Turing bifurcation line with
[PVA]0 is usually minor, both in calculations and in experiments,
as shown in Figure 9 by comparing the low [MA]0 limit of the
Turing domain at different values of [PVA]0. To test the extent
of such an invariance, a systematic study of the onset of Turing
patterns was performed as a function of [PVA]0 at [ClO2]0 ) 1
× 10-4 M. This relatively low value was chosen in order not
to be hindered by losses of contrast of patterns when [PVA]0 is
decreased. Figure 11 gathers the experimental and computed
results of this study. For this low [ClO2]0 value the model
predicts a large subcritical domain of Turing patterns. The
computed Turing bifurcation line and the limit of this subcritical
domain are reported in Figure 11. The two lines evolve nearly
parallelly as a function of PVA and bracket the experimentally
observed transition line, at low [PVA]0. As already mentioned,
hysteresis is not observed within our experimental concentration
step changes, i.e., 10% around the drawn transition line.

Calculations show that the presence of flow terms slightly
shifts the Turing bifurcation to lower values of [MA]0 as the
PVA concentration is increased. However, this shift becomes
significant only at low [ClO2]0 values. This is consistent with
the fact that the lower is the [ClO2]0 value the larger is the
difference between the flow value and the concentration of ClO2

in the reactor. In experiments, a similar deviation is first
observed at low [PVA]0, but when [PVA]0 > 4.5 g/L, an
additional stronger deviation develops in the opposite direction.
This shift depends on the thickness of the disk of gel: for a
thickness of 0.5 mm, the position of the Turing transition line
is basically unchanged at low [PVA] while the shift to high
[MA] 0 vanishes even for [PVA]0 ) 10 g/L. This shift cannot

be accounted for by the presence of flow terms. One could evoke
the participation of PVA in reactions other than complexation
or the fact that the strong increase in the viscosity of the solution
might affect some fast steps in the reaction.

A comparison of the wavelength dependence on [MA]0,
[ClO2]0, and [PVA]0 can be established between the experiments
and our model system. In both cases, the wavelength of the
Turing patterns depends little or not on malonic acid. This
common property allows us to compare the wavelengthλ at
experimental and computed points which only differ in malonic
acid, to counterbalance the slight shift between the observed
and calculated phase diagrams. Table 1 gathers a sample of
experimental and computed wavelengths as a function of
[ClO2]0. The wavelength of the pattern is very sensitive to
[ClO2]. The agreement between the observed and computed
relative changes as a function of [ClO2]0 is excellent. The
experimental wavelength slightly depends on [PVA]0 when this
concentration is high, whereas it is independent in the calcula-
tions. The calculated independence ofλ on [PVA] is akin with
the predicted invariance in pool-chemical systems.47 The
experimental increase of wavelength with [PVA] suggests that
the relative decrease in the chemical time is greater than that
of the diffusion time of iodide. This could result from a
difference between the effective concentration of complexing
sites per unit weight of polymer in the free solution of the CSTR
and in the gel matrix.

Let us mention incidentally experimental observations relative
to a narrow domain of parameter along the limit between
stationary and nonstationary patterns (Figure 9). Inside the gel,
oscillatory behaviors can anticipate the Hopf bifurcation in the
CSTR. In this marginal domain, spatio-temporal patterns
reminiscent of Turing-Hopf mixed modes,56 similar to those
already reported in two-side-fed reactors,57 can be observed.
Yet, here the spatio-temporal behavior is not complicated by
the parameter ramps inseparable of two-side-fed gel reactors.58

4. Discussion and Conclusion

The main conclusion of this systematic study is that, despite
its formal simplicity, the two variable Lengyel-Epstein model
accounts quasi quantitatively for the main features of Turing
patterns observed in the (ClO2-I2-MA) reaction provided that
the ad-hoc constant R of the model is properly chosen.
Computations are made easy and can be readily connected to
the analytically calculable properties of the model since the one-
side-fed thin gel reactor provides a good approximation of the
pool-chemical hypothesis. This relies on the slow concentration
variations of the input species and on the characteristic diffusion
time in the depth of the gel. The only noticeable discrepancies
appear in marginal domains and when [ClO2]0 is very low or
[PVA]0 is high. They essentially point out the limits of the
approximations and reveal some previously overlooked problems
directly associated with the actual status of boundary conditions
and dimensionality.

As a matter of fact, a careful theoretical analysis reveals some
serious difficulties that need additional explanations. Up to now,
we have assumed that the patterns can be considered as two-
dimensional, i.e. the spontaneously selected structures are made
of short isoconcentration “walls” (stripes) or “columns” (spots)

Figure 11. Dependence of the low [MA]0 Turing limit on [PVA]0 at
[ClO2 ]0 ) 1 × 10-4 M.

TABLE 1: Pattern Wavelength at [PVA] 0 ) 4.5 g/L

104[ClO2]0
(M)

exptl λ
(mm)

numerical
λ (mm)

104[ClO2]0
(M)

exptl
λ (mm)

numerical
λ (mm)

1 0.41( 0.02 0.38 3.5 0.28( 0.02 0.24
1.75 0.33( 0.02 0.33
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orthogonal to the faces. From this point of view, the thinner
the gel, the better the two-dimensional approximation should
be. A thickness equal to a wavelength or less would seem
appropriate but a new problem then arises. The feed-face of
the disk in contact with the CSTR is permanently kept
homogeneous, defining a uniform Dirichlet boundary condition,
and no pattern can form in the vicinity of this face. When the
system is thin, the influence of this boundary condition would
extend over the whole gel and all transverse instabilities (i.e.
parallel to the feed-surface) should be hindered. To explore the
consequences of the nature of boundary conditions on pattern
selection, we have performed a few 3-D computations with the
LE model.53,60In the following, we only report the conclusions.
When the system is forced with a Dirichlet boundary condition
onto the feed-face and the thickness isl e λ/4, the transverse
instability is always inhibited so that a uniform light absorption
would be obtained through the gel and no pattern would be
detected. Moreover, for slightly thicker systems, nonregular
patterns form. On the contrary, in pool-chemical conditions with
no flux boundaries on both sides, the system behaves as two-
dimensional for almost all thicknesses in the range 0< l < λ,
developing the correct planforms, but such boundary conditions
obviously exclude any realistic feed process. To understand the
successful 2-D interpretation of the experiments of section 3,
we have to reconsider the nature of the boundary conditions.
As a matter of fact, the contact between the gel and the CSTR
contents is achieved through a membrane (section 2.1). More-
over a boundary layer in the turbulent fluid of the CSTR very
likely forms along the membrane, decreasing the efficiency of
exchanges and mixing in the vicinity of the feed-surface. The
interface “membrane+ boundary layer”, hereafter referred for
simplicity as the “membrane”, introduces some partial decou-
pling between the bulk of the CSTR and the gel. As a first
approach, we can describe the effect of this membrane in a
phenomenological way by using a mixed boundary condition
at the feed-interface. With finite difference equations this is
conveniently obtained using the following formula for the
diffusion term in thez-direction, orthogonal to the faces:

HereCe is the concentration in the CSTR,C0 the concentration
at the grid point of the gel at the interface,C1 the concentration
at the first point inside the gel, and∆z the spatial stepsize. The
effects of the membrane are contained in the phenomenological
parameterem, which has the dimension of a length and can be
considered as a kind of effective thickness (to be distinguished
from the physical thickness!) of the membrane that holds for
all phenomena which take place within it. Whenem f 0 (no
membrane), Dirichlet boundary conditions are recovered, whereas
when em f ∞ (complete decoupling), no flux boundary
conditions are recovered. We have found that values ofem in
the range 0.1-0.2 mm (the same order of magnitude that the
physical thickness) introduce an appropriate decoupling which
restores, in most cases, the 2-D behavior.53 This can be
understood from the 1-D simulations reported in Figure 12,
analogue to those of Figure 5, but where the effect of the
membrane for different values of parameterem are compared
to the caseem ) 0. Despite the partial decoupling introduced at
the interface, the changes induced by the membrane for the
concentrations at this interface are rather small (they are the
largest for I2) and the pool-chemical approximation inside the
gel is preserved. On the contrary, the profiles of the intermediate
species are strongly modified, gaining a quasi-horizontal tangent

at the interface, the signature of no flux boundary conditions
which are required to restore the validity of the 2-D approxima-
tion.

Thus, there is almost perfect coupling for the species that
correspond to the input parameters and almost perfect decou-
pling for those which are intimately involved in the pattern
formation dynamics. The minor changes in input species
concentrations might only induce a small shift in the onset of
Turing patterns, but the general trends discussed in section 3
should be preserved. Note that this description is different from
the so-called CFUR approximation,61 since, despite the phe-

∂C0

∂t
) 2D

(∆z)2[(C1 - C0) + ∆z
em

(Ce - C0)] (11)

Figure 12. Numerical simulations of 1-D concentration profiles in
the thickness of the gel (LRE model) with and without membrane. The
interface is located atx ) 0. Key: [S]0 ) 4.5 × 10-3 M, [I 2]0 ) 3 ×
10-4 M, [MA] 0 ) 2 × 10-3 M, [ClO2]0 ) 2.3 × 10-3 M; s, em ) 0
(no membrane, full coupling); - - -,em ) 0.1 mm;- -, em ) 0.2 mm.
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nomenological description of the membrane, the feed remains
locatedat the boundaryand the system is treated as tridimen-
sional but theselected structureis bididimensional. To check
the validity of this interpretation, the coupling between CSTR
and the gel was changed in a few test experiments. A stronger
coupling was obtained by withdrawing the Anotec membrane
from the interface. In this case, the onset of Turing patterns is
delayed and the extent of their domain is reduced by about a
factor of 3, while, on doubling the membrane at the interface,
only a very slight advance of the onset of patterns by 5% is
observed. Thus, we confirm the major role played by the
coupling strength at the interface on the formation of Turing
patterns. More generally, the genuine nature of the boundary
conditions should be taken into account, especially in the case
of one-side-fed reactors where reactions start before chemicals
diffuse into the gel.

Until now, this important boundary problem has been nearly
systematically overlooked in the chemical patterns literature,
and we think that a number of experimental observations cannot
be understood without a clear perception of the role played by
the interfaces.62
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